Skip to content

Data Mining

Hvad er Data Mining? 

Data Mining er en proces, som bruges til at opdage mønstre i store datasæt, som involverer metoder i skæringspunktet mellem Machine Learning, statistik og databasesystemer. Data Mining er en proces, mens datalogi er et område. Målet med Data Mining er altså at gøre dataene mere anvendelige, mens målet med datalogi er at opbygge datacentriske produkter til en organisation.

Data Mining er en aktivitet, som er en del af en bredere videnopdagelse i databaseprocessen (KDD), mens Data Science er et felt ligesom matematik eller informatik.

Data Mining arbejder mod at finde uoverensstemmelser, mønstre og korrelationer i store datasæt for at forudsige resultater. Ved at bruge en bred vifte af teknikker kan man bruge disse oplysninger til at reducere omkostninger, øge indtægterne, forbedre kundeforholdene eller reducere risikoen.

Grundlaget består af tre videnskabelige discipliner: statistik, kunstig intelligens og Machine Learning. Machine Learning i Data Mining bruges mere til mønstergenkendelse, mens den i datalogi har en mere generel anvendelse.

Mange af algoritmerne blev opfundet for mange år siden, men med de sidste ti års fremskridt inden for processorkraft og hastighed – er det nu muligt at automatisere meget, som før krævede manuel behandling. Jo mere komplekse datasættene er, jo større er potentialet for at finde relevante sammenhænge.

De vigtigste trin i Data Mining processen er:

  • Udpakning, tranformering og indlæsning af data til et datalager
  • Lagring og administering af data i flerdimensionelle databaser
  • Giv dataadgang til forretningsanalytikere via applikationer
  • Præsenter analyserede data i letforståelige former, såsom grafer

SYSCO og Data Mining:  

I SYSCOs AI- og analyseprojekter er Data Mining et grundlæggende element i at udvinde indsigt fra data. F.eks. har vi arbejdet med et projekt, hvor vi skulle indsamle data fra flere sensorer fra forskellige vandkraftværker. I dette tilfælde var det let at forstå de forskellige trin ift. Data Mining:

  • Kombiner de forskellige datakilder fra forskellige vandkraftstationer og systemer til en samlet
  • Administrer den indsamlede data
  • Udvælg hvilke data som skal bruges. Ikke alle tilgængelige data er interessante, så det afhænger af projektet, og hvad behovet er. Her ønskede vi at opdage afvigelser i opstart af en turbine i forbindelse med et vandkraftværk.

Læs mere om vores tjenester indenfor Data Integration >

Relaterede ord:  

Artificial Intelligence, Business Intelligence, Database, Machine Learning, Data Science, Data Wrangling, Data Crawling, Python, R, Automatisering, Digitalisering, Digital Transformation, Data Scientist, Design Thinking

Back to top